Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel
نویسندگان
چکیده
منابع مشابه
Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel
In this paper, numerical solutions of the linear and nonlinear fractional integrodifferential equations with weakly singular kernel where fractional derivatives are considered in the Caputo sense, have been obtained by Legendre wavelets method. The block pulse functions and their properties are employed to derive a general procedure for forming the operational matrix of fractional integration f...
متن کاملWavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel
This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel. First, a collocation method based on Haar wavelets (HW), Legendre wavelet (LW), Chebyshev wavelets (CHW), second kind Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW) and BPFs are presented f...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملLegendre Wavelets Method for Fractional Integro-Differential Equations
Department of Mathematics and Sciences Dhofar University, Salalah Oman [email protected] Abstract Legendre wavelets methods are commonly used for the numerical solution of integral equations. In this paper, we apply the Legendre wavelets method to approximate the solution of fractional integro-differential equations. Numerical examples are also presented to demonstrate the validity of the method....
متن کاملNumerical Solution of Singular Integro-differential Equations with Cauchy Kernel
The main purpose of this article is to present an approximation method of for singular integrodifferential equations with Cauchy kernel in the most general form under the mixed conditions in terms of the second kind Chebyshev polynomials. This method transforms mixed singular integro-differential equations with Cauchy kernel and the given conditions into matrix equation and using the zeroes of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2016
ISSN: 0307-904X
DOI: 10.1016/j.apm.2015.10.009